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METALIMNETIC OXYGEN MINIMA IN LAKE ONTARIO, 1972!
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ABSTRACT. Dissolved oxygen profiles taken in Lake Ontario in 1972 indicate the presence of a distinct
and persistent metalimnetic oxygen minimum during the stratified season. Evidence indicates the phenom-
enon occurred in previous years as well. The depth and magnitude of the minimum were closely related to
the thermocline depth and strength of stratification. Lowest minimum values in 1972 occurred in early to
mid September and were 8.6 mg/l dissolved oxygen and 82% saturation. Offshore the minimum decreased
from west to east across the lake and was lesser in magnitude nearshore and in the northeast. During the
nonstratified period oxygen concentrations remained relatively constant with depth at approximately

saturated values.

INTRODUCTION

Metalimnetic oxygen minima have been observed
in a variety of North American, European, and
Japanese lakes (summarized in Hutchinson 1957
and Kuznetsov 1970). None of these lakes, how-
ever, is comparable in size to the Great Lakes.
Oxygen profiles collected in Lake Ontario during
the 1972-73 International Field Year on the Great
Lakes (IFYGL) show a distinct lake-wide oxygen
minimum during thermal stratification which was
absent during isothermal periods. Data from pre-
vious years indicate the phenomenon was not
unique to 1972 (Dobson 1967, Allen 1969, Sweers
1969). This paper describes some of the character-
istics of the 1972 minimum and relates them in a
preliminary way to causes identified in other
smaller lakes and in the ocean. A complete under-
standing of the phenomenon awaits further research.

METHODS

Electrobathythermograph and dissolved oxygen
meter data from the 1972 USRV Researcher
IFYGL cruises were obtained from IFYGL Data
Management, National Climatic Center (NCC),
Asheville, NC 28801. Depth and temperature
values, already converted to meters and degrees
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centigrade, required little processing except for
elimination of obviously bad values. Claimed
accuracies were + 1.0% and + .02% respectively
(Robertson 1974). Oxygen data, however, were
in volts and required considerable processing.

Four factors were considered in processing
the oxygen data:

1) Salinity and temperature corrections
2) Calibration factors

3) Flow sensitivity

4) Instrument response time

Salinity and temperature corrections were done
as described in Pijanowski (1973). Calibration of
the probe, a MINOS DOM, was assumed done as
described in Section 4.4.1.2¢ of the MINOS DOM
Operating and Maintenance Instructions (Beckman
Instruments, Inc. 1971). All cruises had a recorded
calibration factor of 2.0. The resulting oxygen
values in mL (STP)/L had a claimed accuracy of
+ 0.3 mL/L (National Oceanographic Instrumenta-
tion Center [NOIC] 1972).

The accuracy, however, was dependent upon the
instrument’s moving sufficiently rapidly in the
water, a condition not always met. Readings taken
at less than .25 m/sec were not considered reliable
(NOIC 1972, and my empirical results). Data
values were retained for one response time after a
decrease in speed below .25 m/sec, then rejected
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for one response time after an increase in speed
above .25 m/sec. Response times were calculated
according to Pijanowski (1973). Oxygen and
temperature data were then averaged over 2 m
depth intervals, a depth range corresponding
roughly to one response time of the oxygen
probe at the average speeds and temperatures
encountered. A final correction for the response
time lag was then made by shifting the depth of
the downcast oxygen values up 2 m and depth of
the upcast oxygen values down 2 m. Downcast
and upcast values for both oxygen and temperature
were averaged to produce a corrected profile and
any missing values were linearly interpolated.
Oxygen values in mL (STP)/L were converted to
mg/L by multiplication by 1.4286. Oxygen percent
saturation was calculated according to Table 74
in Hutchinson (1957). The resulting data for a
maximum of 57 stations on 12 cruises is available
in Boyd and Eadie (1978).

RESULTS

The lake averaged profiles in Figure 1 illustrate the
seasonal development of the oxygen minimum in
1972 (profiles begin at 6 m because oxygen data
above this depth were unreliable). Since these are
whole lake averages, station specific features have
been eliminated and only large scale features
remain. However, a sequence of profiles at any
particular station appears qualitatively similar.
During the cruise in June only weak thermal
stratification exists and no evidence of a metalim-
netic minimum is seen. If anything, there is a
suggestion of an oxygen maximum. During suc-
ceeding cruises from August through September a
well defined thermocline develops and a definite
metalimnetic oxygen minimum appears and
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intensifies. After the first part of October the
oxygen minimum disappears as the thermal strati-
fication weakens.

Thermocline depth (defined as depth of maxi-
mum density gradient) and minimum dissolved
oxygen and percent saturation depths were deter-
mined for each station-cruise combination. Meteor-
ological conditions induce large variations in
thermocline depth at individual stations; however,
good linear correlations between thermocline and
minimum oxygen depths for most cruises (Table 1)
imply that the motions of the oxygen minima
tended to follow the motion of the thermocline.
Lakewide averages of these depths for each cruise
(Figure 2) removed station specific features and
illustrate the temporal changes in the positions
of the oxygen minima relative to the thermocline.
Consistently the average depth of minimum per-
cent saturation lay below the average thermocline
depth. Through mid August it lay 2-10 m below;
from the end of August to October it lay 24 m
below. The average depth of minimum dissolved
oxygen, on the other hand, tended to lie at the
average thermocline depth or a few meters above
with the exception of the late June cruise. Both
minima were found closer to the thermocline dur-
ing September.

Temporal variations showed in the magnitudes
of the dissolved oxygen and percent saturation
minima (Figure 3). Minimum dissolved oxygen and
percent saturation values varied considerably from
station to station, but tended on the whole to
decrease throughout the summer until sometime in
September, then began to increase again. In terms
of dissolved oxygen, the lowest minimum value in
1972 occurred about 4 September, with an average
value of 8.6 mg/L. In terms of percent saturation

TABLE 1. Correlation coefficient r for depth of oxygen minima versus depth of thermocline for Researcher Lake Ontario

cruises, 1972,

Dissolved Oxygen

Percent Saturation

Researcher Significant/Not Significant Significant/Not Significant
Cruise Dates T linear correlation (a=.10) r linear correlation (a=.10)

9 6/26 - 6/28 52 NS .59 NS

14 7/31 - 8/3 49 S 48 S

16 8/14 - 8/17 .55 S .06 NS

19 9/5 - 9/8 7 S .67 S

20 9/11- 9/14 85 S .80 S

21 9/18 - 9/22 81 S 92 S

22 9/25 - 9/27 .69 S .80 S

24 10/10 - 10/11 .70 S 17 NS
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FIG. 1. Lake averaged profiles of dissolved oxygen (0), percent saturation (P), and temperature (T) versus depth
for selected Researcher Lake Ontario cruises, 1972. Profiles at individual stations are similar.

A definite correlation (significant at o< .01) was
found between the average strength of stratification
and the average magnitudes of the dissolved oxygen
and percent saturation minima (Figure 3). Strength
of stratification was defined in terms of the Brunt-
Vaisala frequency N at the thermocline,

the lowest minimum was around 11 September,
with a value of about 82%. Oxygen minima in
1964, 1966, and 1967 were lowest at approximately
the same time (Allen 1969, Dobson 1967, Sweers
1969), although the 1966 values in Dobson were
not as low.
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FIG. 2. Average thermocline (T) and minimum dissolved
oxygen (O) and percent saturation (P) depths for Lake
Ontario, 1972.

N2=gap
p oz

where p=density, g=gravitational acceleration and
z=depth (Pond and Pickard 1978). During Septem-
ber when N was at a maximum, minimum oxygen
and percent saturation were lowest, and as men-
tioned, depths of the minima occurred closest to
the thermocline.

Figure 4 illustrates typical spatial patterns
found for the oxygen minima. In general, minima
were lower near shore and in the eastern part of
the lake, and were particularly low in the north-
east near the St. Lawrence outlet. Proceeding west-
ward along the northern shore from Prince Edward
Point up to Presqu’lle, minimum oxygen values
continued to be especially low, although becoming
higher towards the west.
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FIG. 3 Lake Ontario minimum metalimnetic dissolved
oxygen and percent saturation values (points and solid
lines) and average thermocline stability (broken line)
from June through October 1972. Points are individual
station values; lines represent cruise averages.

DISCUSSION

The main factors mentioned in the literature as
contributing to a metalimnetic oxygen minimum
are lake productivity (e.g., Kusnetzow and Karzin-
kin 1931, Ruttner 1933, Hutchinson 1957, Shapiro
1960); kinematic consequences of the temperature
gradient (e.g., Ruttner 1933, Czeczuga 1959,
Gordon and Skelton 1977); and water transparency
(e.g., Ruttner 1933, Czeczuga 1959). All are likely
factors in Lake Ontario, but a determination of
the relative importance of various mechanisms at
different times and places awaits further research.
This section presents a summary of these proposed
mechanisms and the evidence in support of them
from this study. A fourth mechanism of importance
in the oceans is also mentioned.
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FIG. 4. Lake Ontario metalimnetic oxygen (above) and
percent saturation (below) minima, Researcher cruise 21
(18-22 September, 1972).

Earlier investigations have linked lake pro-
ductivity to an oxygen minimum through various
combinations of phytoplankton and zooplankton
respiration and bacterial decomposition in the
metalimnion. In support of this mechanism in Lake
Ontario in 1972 is the tendency for minimum
values to decrease from west to east, corresponding
to the direction of increasing lake productivity. In
addition, the generally more productive nearshore
regions (Munawar and Nauwerck 1971; Gloo-
schenko et al. 1974, Stadelman, Moore, and Pickett
1974) have lower metalimnetic minima, and the
lowest metalimnetic oxygen values were found in
the most highly productive area, the northeastern
corner near the St. Lawrence outlet (Munawar and
Nauwerck 1971, Glooschenko et al. 1974, Stoermer
et al. 1975). Besides clarifying the significance of
this mechanism, research is needed to determine
the relative contributions of zooplankton, phyto-
plankton, and bacterial respiration.

Kinematic consequences of the temperature
gradient include decreased seston settling velocities
due to increased density and viscosity and greatly
suppressed vertical advection and turbulent diffu-
sion across the metalimnion. The former results in
an increased metalimnetic seston concentration as
material settles into the layer faster than it settles
out, at least until a steady state is reached. Such
accumulations have been observed in the Great

Lakes, including Lake Ontario (Pinsak 1967,
GLERL unpublished data). For organic material
an increased oxygen demand is possible—through
respiration of organisms feeding on it or through
respiration of the material itself. The greater the
change in settling velocity from epilimnion to
metalimnion, the greater the concentration of
material in the metalimnion, and hence the greater
the potential oxygen deficit. Herein may lie the
explanation for the relationship between intensity
of stratification and magnitude of the oxygen
minimum. In addition, suppressed vertical motion
across the metalimnion, i.e., reduced vertical
diffusion, causes the zone to be relatively isolated
from epilimnion and hypolimnion. Consequently,
any oxygen consumption or production in the
region is not balanced by a flux of oxygen from or
to the adjacent region.

The third factor in the development of a meta-
limnetic minimum is the location of the thermo-
cline below the euphotic zone during the most
highly productive months. In a study of two
similar Polish lakes (Czeczuga 1959), one having
an oxygen maximum in the metalimnion, the other
having an oxygen minimum, the main difference
between the two lakes was the location of the
compensation point i.e. where production equals
respiration or the 1% light level. In the case of
the lake with the metalimnetic oxygen maximum,
the compensation point lay below the thermocline
and phytoplankton trapped in the region thrived
on the nutrients released from decomposing organic
matter. In the other lake with a shallower compen-
sation point only oxygen consuming processes
occurred in the metalimnion and an oxygen deficit
developed. Because of its moderately high pro-
ductivity and because of CaCO, precipitation,
epilimnion transparency in Lake Ontario is very
low in July, August, and September (~2 m)
(Dobson, Gilbertson, and Sly 1974). Only Western
Lake Erie is comparably low. Thus the compensa-
tion point in Lake Ontario is likely to be above the
metalimnion.

A final cause of a metalimnetic oxygen minimum
can be horizontal advection of oxygen depleted
water from one region to another. This commonly
occurs in the ocean (Miyake and Saruhashi 1956,
Menzel and Ryther 1968) and may explain the
lower metalimnetic oxygen values along Lake
Ontario’s northern shore. The cause or causes of
the very low minima in the northeast or the
oxygen depleted water itself appear to have been
carried westward along the Canadian shore by the
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dominant counterclockwise current regime observed
in 1972 by Pickett and Bermick (1977).

SUMMARY

During summer 1972 a distinct and persistent
oxygen minimum occurred in the thermocline
region of Lake Ontario. The depth of the oxygen
minimum was directly related to the depth of the
thermocline and its magnitude inversely to the
strength of stratification. Lowest minimum oxygen
values occurred in early to mid September. Hori-
zontal gradients in magnitude were similar to
horizontal gradients in lake productivity. Possible
causes include zooplankton, phytoplankton, and
bacterial respiration; reduced vertical advection
and turbulent diffusion; accumulation of material
in the metalimnion; location of the compensation
point above the metalimnion; and horizontal trans-
port of oxygen depleted water.
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